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Abstract. We consider the problem of intersection-free planar graph
morphing, and in particular, a generalization from Euclidean space to
spherical space. We show that under certain conditions, there exists a
continuous and intersection-free morph between two sphere drawings of a
maximally planar graph, where sphere drawings are the spherical equiv-
alent of plane drawings: crossings-free geodesic-arc drawings. In addition
to the existence proof, we describe a morphing algorithm along with its
implementation.

1 Introduction

Morphing refers to the process of transforming one shape (the source) into an-
other (the target). Morphing is widely used in computer graphics, animation,
and modeling; see a survey by Gomes et al [9]. In planar graph morphing we
would like to transform a given source graph to another pre-specified target
graph. A smooth transformation of one graph into another can be useful when
dealing with dynamic graphs and graphs that change through time where it is
crucial to preserve the mental map of the user. The mental map preservation is
often accomplished by minimizing the changes to the drawing and by creating
smooth transitions between consecutive drawings.

In this paper we consider the problem of morphing between two drawings,
Ds and Dt, of the same maximally planar graph G = (V, E) on the sphere. The
source drawing Ds and the target drawing Dt are sphere drawings (generaliza-
tions of Euclidean plane drawings to spherical space). The main objective is to
find a continuous and intersection-free morph from Ds to Dt.

1.1 Previous Work

Morphing has been extensively studied in graphics, animation, modeling and
computational geometry, e.g., morphing 2D images [3, 11], polygons and poly-
lines [8, 15], 3D objects [12, 13] and free form curves [14].

Graph morphing, refers to the process of transforming a given graph G1 into
another graph G2. Early work on this problem includes a result by Cairns in
1944 [4] who shows that if G1 and G2 are maximally planar graphs with the same
embedding, then there exists a non-intersecting morph between them. Later,
Thomassen [16] showed that if G1 and G2 are isomorphic convex planar graphs
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with the same outer face, then there exists a non-intersecting morph between
them that preserves convexity. Erten et al show how to morph between drawings
with straight-line segments, bends, and curves [6]. This algorithm makes use
of compatible triangulations [2] and the convex representation of a graph via
barycentric coordinates [7, 17].

As the sphere and the plane are topologically the same, it is natural to at-
tempt to generalize the non-intersecting morph algorithm from Euclidean space
to spherical space. Alfeld et al [1] and Gotsman et al [10] define analogues of
barycentric coordinates on the sphere, for spherical Bernstein-Bézieri polynomi-
als and for spherical mesh parameterization, respectively. However, barycentric
coordinates are problematic on the sphere. One problem is that unlike on the
Euclidean plane, three points on the sphere define two finite regions. A system
of barycentric coordinates must distinguish between these two regions. A second
problem arises from the non-linearity introduced by the sphere. The system of
equations used to determine the drawing at any stage of the morph has non-
unique solutions, and it is not easy to guarantee smoothness of the morph.

1.2 Our Results

Our approach to morphing spherical drawings focuses on affine transformations
of the inscribed polytopes of the given spherical drawings. We apply rotations,
translations, scaling and shearing to the inscribed polytope, while projecting
its endpoints onto the surface of the sphere throughout the transformations.
At an intermediate stage, we use the intersection-free morphing algorithm for
plane drawings together with a gnomonic projection to/from the sphere. Our
approach yields a continuous and intersection-free morph for sphere drawings
of maximally planar graphs, provided that the source and target drawings have
convex inscribed polytopes. Note that in general, the inscribed polytope of a
sphere drawing is star-shaped but need not necessarily be convex.

2 Background

We begin with some mathematical background about sphere drawings and spher-
ical projections. The concept of a straight line in Euclidean space generalizes
to that of a geodesic in Riemannian spaces, where the geodesic between two
points is defined as a continuously differentiable curve of minimal length between
them. Thus, geodesics in Euclidean geometry are straight lines, and in spherical
geometry they are arcs of great circles. The generalization of a crossings-free
straight-line drawing of a planar graph in spherical space uses geodesics instead
of straight-lines.

Definition 1. A sphere embedding of a graph is a clockwise order of the neigh-
bors for each vertex in the graph. A drawing is a drawing of an embedding if
neighbors of nodes in the drawing match the order in the embedding. Note that
3-connected planar graphs in general, and maximally graphs in particular, have
a unique sphere embedding, up to reflection.
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Definition 2. A geodesic-arc sphere drawing of a graph is the sphere analogue
of a straight-line drawing of a graph. The drawing is determined entirely by a
mapping of the vertices of the graph onto the sphere. An edge between two nodes
is drawn as the geodesic arc between them. We assume that no two nodes are
antipodal, as there is no unique geodesic arc between two antipodal points.

Definition 3. A crossing-free, geodesic-arc sphere drawing of a graph is a sphere
drawing of the graph in which no two edges intersect, except at a node on which
they are both incident. We refer to such drawings as sphere drawings for short.
Note that sphere drawings are a generalization of straight-line plane drawings
from Euclidean space to spherical space.

Definition 4. Given a sphere drawing D of a planar graph G, the inscribed

polytope P of D is obtained by replacing the (geodesic) edges in the spherical
drawing by straight-line segments. The inscribed polytope P is by definition
simple and star-shaped, but not necessarily convex.

Definition 5. The gnomonic projection is a non-conformal map projection ob-
tained by projecting a point on the surface of the sphere from the sphere’s
center to the point in a plane that is tangent to the south pole. Since this pro-
jection sends antipodal points to the same point in the plane, it can only be
used to project one hemisphere at a time. In a gnomonic projection, geodesics
are mapped to straight lines and vice versa [5].

3 Morphing between sphere drawings

The algorithm for morphing between two sphere drawings Ds and Dt of the
same underlying graph G can be broken into several stages:

1. Choose an outer face f0 of the underlying graph;
2. Morph the source sphere drawing Ds of G into D′

s, where D′
s is a sphere

drawing of G such that the north pole is inside f0 and the entire drawing is
below the equator;

3. Morph the target sphere drawing Dt of G into D′
t, where D′

t is a sphere
drawing of G such that the north pole is inside f0 and the entire drawing is
below the equator;

4. Project D′
s and D′

t using a gnomonic projection onto the plane tangent to
the south pole to the drawings D′′

s and D′′
t ;

5. Morph D′′
s into D′′

t using the graph morphing algorithm for plane draw-
ings [6].

In practice, step 3 of the above algorithm is used in the reverse direction and
altogether, the morphing sequence is: Ds → D′

s → D′′
s → D′′

t → D′
t → Dt. By

the definition of a gnomonic projection, since D′
s and D′

t are both strictly in the
lower hemisphere, their projections D′′

s and D′′
t onto the plane tangent to the

south pole are plane drawings. This implies the correctness of steps 4 and 5 and
so, to argue the correctness of the overall approach, we must show that steps 2
and 3 of the algorithm above can be accomplished without introducing crossings
in the morph.
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(a) (b)

Fig. 1. (a) Projecting from a polytope that contains the origin to the surface of the sphere;
(b) Gnomonic projection to and from the sphere.

3.1 Maintaining a Smooth and Crossings-Free Morph

Our approach to morphing sphere drawings uses a series of affine transforma-
tions to the inscribed polytope of the underlying graph (steps 2 and 3). We also
rely on the barycentric morphing approach for plane drawings (steps 4 and 5).
Thus, throughout the morph of our sphere drawing, we often track two positions
for each vertex: the actual position of the vertex on the sphere in the sphere
drawing, and the other, in some other construct. The other construct is either a
3D polytope, as in Fig. 1(a), or a plane drawing, as in Fig. 1(b). When transfor-
mations to the construct are applied, the positions of the vertices on the sphere
change appropriately. A useful visualization for this approach is to imagine a
spoke for each vertex, going from the origin of the sphere through both posi-
tions associated with that node. As one position changes, so does the other. For
simplicity, assume the sphere is centered at (0, 0, 0) with radius 1.

Theorem 1. A strictly convex polytope containing the center of a sphere yields

a sphere drawing of that polytope’s skeletal graph when its vertices are normalized

to lie on the sphere.

Proof Sketch: First, note that the geodesic arc between two vertices on the
sphere is the same as the projection of the straight line between those two vertices
of the polytope. Suppose that the projection of the polytope onto the sphere has
a crossing. Consider the point p on the sphere where two edges intersect. This
point must be the projection of two different polytope edges onto the sphere.
This implies that there exists a ray that starts at the center and intersects two
separate edges of the polytope. Let p1 and p2 be the two points obtained from
the intersection of each of these edges with the ray through the origin. Without
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loss of generality, let p1 be the point that is further from the center. Then there
exists a line segment from the center of the sphere to p1 that passes through p2.
This contradicts the assumption that the polytope is strictly convex. Hence, the
resulting sphere drawing must be crossing free. ut

Affine transformations of a convex polytope result in a convex polytope [5].
This observation, together with Theorem 1 yields the following Theorem:

Theorem 2. Affine transformations to a convex polytope P that contains the

center of a sphere, result in sphere drawings of that polytope’s skeletal graph

when its vertices are normalized to lie on the sphere, if the origin remains inside

P throughout the transformation.

As we are not assuming that the inscribed polytope obtained from a sphere
drawing contains the origin, and we propose to deal with sphere drawings strictly
contained in the lower hemisphere, we need an analogous theorem dealing with
polytopes not containing the origin.

Theorem 3. A strictly convex polytope P not containing the center of a sphere

yields a sphere drawing of that polytope’s skeletal graph when its vertices are

normalized to lie on the sphere if, for some face f1, the ray from the origin to

any point on the polytope intersects f1 before any other part of the polytope, and

none of the faces of P lie in planes containing the origin.

Proof Sketch: The face f1 acts as a shield for rays emanating from the origin.
Given a point p of the polytope we can determine its projection p′ on the surface
of the sphere by taking the intersection of the ray from (0, 0, 0) through p with
the sphere. As in Theorem 1, we get an intersection in the spherical drawing if
the ray passes through more than one edge of P . However, by the assumption,
any such ray must first hit P on f1. Since P is convex, the ray has exactly one
point at which it exits P . If there exists an intersection in the spherical drawing,
the ray must intersect edges of P at both its entry and exit points from P . This
would contradict the assumption that f1 is hit first by the ray. ut

3.2 Sliding Sphere Drawings to the Equator

The obvious method of ”sliding” a sphere drawing down to the lower hemi-
sphere is to do a simple linear scale of the drawing, either by z-coordinates in
Euclidean coordinates, or by φ in spherical coordinates. This approach, how-
ever, does not always work. It is easy to construct an example with two non-
intersecting geodesics in the upper hemisphere that must cross on their way to
the lower hemisphere if linear scaling is used; see Fig. 2. Therefore, we consider
the approach where me manipulate the inscribed polytope.

Theorem 4. There exists a continuous and crossings-free morph that moves a

sphere drawing D, of a maximally planar graph G, to a drawing of G such that

the vertices of a chosen face f0 are on the equator and all others are strictly

below the equator, provided that the inscribed polytope P of D is convex.
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(a) (b)

Fig. 2. Linear scaling of the vertices to the southern hemisphere may introduce crossings:
(a) the endpoints of the long edge are below those of the short edge; (b) linear scaling
could bring all the vertices to the southern hemisphere but at some intermediate stage the
two edges intersect.

Proof Sketch: Consider the inscribed convex polytope P corresponding to the
sphere drawing D. We have two cases: either P contains the origin or it does
not.

Case 1 (P contains the origin): First rotate P so that the outward normal
to f0 is parallel to (0, 0, 1). Let v0 be the average of the points of f0. Since P

is convex, the segment between the origin and v0 lies entirely within P . We
can thus apply to P a translation along the vector −v0 and be assured that P

contains the origin throughout the transformation, so Theorem 1 applies. Now
f0 lies within the xy-plane, so when we project its points onto the sphere, they
lie on the equator. Since P is convex, we know all other points of P are on one
side of f0. Since the outward normal of f0 is pointing up, the other points have
to be below f0, and hence below the equator.

Case 2 (P does not contain the origin): Here we rely on Theorem 3,
instead. First we need to show that its precondition is true: that there exists
some face f1 that acts as an shield that eclipses the rest of the polytope from
the origin. Since P does not contain the origin, there exists some plane that
passes through the origin such that P lies entirely on one side. Thus D has one
face, which we conveniently call f1, that encompasses a half-sphere.

The f1 face must eclipse the rest of P from the origin. The edges in D that
make up f1 match the edge of the spherical region eclipsed by f1 in P . Since f1

is the ”outer”-most face, there can be no nodes outside of this region.

We can thus apply any affine transformations to P that maintain f1’s eclipse
of the rest of the polytope. We use shearing as it is an affine transformation,
straight lines remain straight. If the application of a transformation were to
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negate f1’s ”eclipse” property, then it would have to introduce a clear path from
the origin to some edge in P not on f1.

Shearing and rotation do not affect the origin, so we can apply those while
maintaining a valid sphere drawing in the projection. Let v0 be the centroid of
f1. We rotate P so that v0 lies in the xy-plane on the line y = x. v0 now lies at
(a, a, 0), for some a. Simultaneously shear P in x and y with the factor −1, and
v0 ends up at the origin. We now have a convex polyhedron that contains the
origin, and so have reduced the problem to case 1. ut

3.3 Sliding Sphere Drawings to the Lower Hemisphere

From Theorem 4 we know that we can transform D into a drawing such that
the vertices of a face f0 are on the equator and all the rest are strictly below
the equator. At this stage it is easy to argue that there exists an ε > 0 such
that we can translate the polytope by an additional ε vertically down, so that
all the points on the sphere (including those that form f0) are strictly below the
equator.

In practice, however, the valid values of ε can be arbitrarily small, making
this simple approach unattractive for morphing. The value of ε depends on the
placement of the vertices of f0 around the equator. If two vertices of f0 are
near-antipodal, then the edge between them can pass arbitrarily close to the
south pole when we translate P strictly below the equator. This would make it
difficult to prevent crossings in the spherical drawing. To remedy this problem,
we use scaling and shearing (both affine transformations) to the polytope P to
make f0 an equilateral triangle. We consider f0 by itself in the plane, calculate
the transformations necessary to make it equilateral (shear around its centroid
until it is isosceles, and then scale to make it equilateral), and apply them to P

as a whole.
Our goal is to move all vertices outside of f0 low enough on the sphere so that

we can guarantee f0 blocks their view of the origin. As we show below, it suffices
to move the rest of the points below the Antarctic circle (66oS, z ≈ −0.9135)
to ensure that they are eclipsed by an f0 whose vertices lie on the Tropic of
Capricorn (23.5oS, z ≈ −0.3987). These two values also provide a bound on the
area of the straight-line plane drawing obtained as the gnomonic projection of
the sphere drawing. With the next theorem we derive the general relation that
must exist between these two latitudes in order to guarantee we get a crossing
free sphere drawing, as per Theorem 3, and it is straight-forward to verify that
that these two values satisfy the relation.

Theorem 5. There exists a continuous and crossings-free morph that moves

a sphere drawing D, of a maximally planar graph G, to a drawing of G such

that the all the vertices are strictly below the equator, provided that the inscribed

polytope P of D is convex.

Proof Sketch: Here is the outline of the proof. We begin with f0 as a triangle
in the xy-plane. We apply scaling and shearing to P to transform f0 into an
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equilateral triangle. We choose a value z1 that we want to translate f0 down
to, and calculate a scaling factor s as a function of z1 and z3, the highest z-
coordinate of any point outside f0. We scale P in x and y by a factor of 1

s
,

and project it back onto the sphere. Note that this leaves f0 in the xy-plane.
The scaling factor was computed so that when we translate P down by z1 the
face f0 eclipses the rest of P , yielding a valid sphere drawing at each stage by
Theorem 3. Since f0 is now strictly below the equator, and all other nodes are
below f0, the entire drawing is below the equator. Next we provide some of the
details about this argument.

We begin where Theorem 4 left off. The inscribed polytope P has the desig-
nated face f0 on the equator and all other vertices in the southern hemisphere.
We skip the details about scaling and shearing to P to transform f0 into an equi-
lateral triangle, and focus on calculating the scaling factor s needed to ensure
that when we translate P below the equator, the spherical drawing contains no
crossings.

Since we have transformed f0 into an equilateral triangle, we know exactly
where its arcs lie, and can calculate the lowest point on the sphere covered by f0.
We would like to translating P down so that f0 lies in the plane z = z1 (say, the
Tropic of Capricorn). Rotate P so that one of f0’s vertices lies on the y-axis. Then
the coordinates of that point are (0,

√

1 − z2
1 , z1). Since f0 is equilateral, we can

easily find that its other two points are at (
√

3y1

2
, −y1

2
, z1) and (−

√
3y1

2
, −y1

2
, z1).

Since these two are symmetric around the y-axis, we can use the arc between
these to find the lowest point of f0 on the sphere. The midpoint of the spherical
arc is the projection of the midpoint of the Euclidean line between these two
points, given by the average of the two points:

m = (0,
−y1

2
, z1) = (0,

−
√

1 − z2
1

2
, z1)

We need its magnitude to project it onto the sphere:

||m|| =

√

−
√

(1 − z2
1)

2

2

+ z2
1 =

√

1 − z2
1

4
+ z2

1 =

√

1

4
+

3

4
z2
1 =

1

2

√

3z2
1 + 1

The midpoint m had a z-coordinate of z1 and so, when projected onto the sphere,
it has a z-coordinate of z1

||m|| . Thus, the lowest point z2 of f0 on the sphere would

be

z2 =
z1

||m||
=

2z1
√

3z2
1 + 1

.

If we move all points of D not in f0 below z2, then we can translate P down
and guarantee that f0 still eclipses P from the origin, and thus maintain a valid
sphere drawing throughout. Using the Tropic of Capricorn for z1 gives a z2 that
is above the Arctic Circle, so using the two familiar latitudes guarantees valid
sphere drawings throughout. To make sure all vertices outside f0 are below z2,
we scale P down around the z-axis by some constant factor s. This scaling has
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Fig. 3. The polytope P has face f0 on the equatorial plane. The highest z-coordinate of
a vertex not on f0 is given by z3. We would like to translate the polytope straight down
so that f0 is on the Tropic of Capricorn plane given by z = z1. We ensure that all vertices
other than those in f0 are below the Antarctic circle given by plane z = z2.

the effect of moving all the vertices not in f0 towards the south pole. We can
calculate the scale-factor s necessary to move all nodes below z2 as follows.

Let z3 be the maximum z-coordinate of any node in D not in f0. We would
like to scale the point (x, y, z3) to (x

s
, y

s
, z3), such that when it is projected back

onto the sphere, its z-coordinate is below z2. To project (x

s
, y

s
, z3) onto the sphere

we first find its magnitude. Since the original point lies on the sphere, we have
x2 + y2 = 1 − z2

3 and the magnitude is given by:

√

x2

s2
+

y2

s2
+ z2

3 =

√

x2 + y2

s2
+ z2

3 =

√

1 − z2
3

s2
+ z2

3 .

As our goal is to have the scaled, projected point lie below z2, so we need to find
a value for s such that: z3

r

1−z
2
3

s
2

+z2

3

< z2. Solving for s gives us:

s >

√

√

√

√

1 − z2
3

z2

2

z2

3

− z2
3

.

Using the scaling factor guarantees all points outside f0 fall below f0’s arcs
on the sphere when projected, and thus f0 eclipses P throughout the translation,
and we can move f0 on the sphere down to the plane z = z1 with the translation
(0, 0,−z).

ut
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3.4 The Complete Morph

We have shown that we can morph a sphere drawing to another sphere drawing
that is entirely in one hemisphere. Then, starting with the source drawing Ds we
can morph it to a drawing D′

s that is strictly below the equator. We can do the
same with the target sphere drawing Dt and morph it to a sphere drawing D′

t

that is strictly below the equator. We then obtain the gnomonic projections D′′
s

and D′′
t of the two drawings onto the plane tangent to the south pole. We then

apply the planar morph algorithm to morph between these two plane drawings.
Throughout the planar morph, the sphere drawing is the inverse gnomonic pro-
jection of the current state of the plane drawing. Finally, we invert the Dt → D′

t

morph to arrive at the target drawing.
In order to perform the planar morph, we must ensure that the outer face in

D′′
s and D′′

t is the same. We must match the upper faces in D′
s and D′

t. Theorem 4
allows us to use whichever face we wish, so this is not a problem.

4 Conclusions and Open Problems

We have shown that under certain conditions we can morph between spherical
drawings such that the morph is continuous and intersection-free. There are
several open problems:

1. Does there exist a continuous and intersection-free morph between any pair
of sphere drawings of an underlying 3-connected graph?

2. In the planar morph stage what is actually computed is not the trajectories
of the vertices, but their locations at any stage in the morph. Is there a
morph with trajectories of polynomial complexity?

3. One can imagine a morph in which the entire drawing is not transferred
to the lower hemisphere would be more visually appealing. Is it possible to
apply this morph while keeping the visual representation of the drawings in
the upper hemisphere? In graphics, transformations are stacked with other
transformations and then inverted (e.g., to rotate around a vector in R3,
one can rotate the whole coordinate system to the x-axis, rotate everything
around the x-axis, since that is easy to do, and then apply the inverse of
the original rotation). Can we interpolate between the inversions of the two
slides so that the morph can use the whole sphere?

4. Is there a more direct way to use spherical barycentric coordinates with
interpolating between convex representations of graph to obtain a spherical
morph, that doesn’t involve reducing the problem to a planar morph?
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